direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C22×C11⋊C5, C22⋊2C10, (C2×C22)⋊C5, C11⋊2(C2×C10), SmallGroup(220,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C11⋊C5 — C2×C11⋊C5 — C22×C11⋊C5 |
C11 — C22×C11⋊C5 |
Generators and relations for C22×C11⋊C5
G = < a,b,c,d | a2=b2=c11=d5=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Character table of C22×C11⋊C5
class | 1 | 2A | 2B | 2C | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 11A | 11B | 22A | 22B | 22C | 22D | 22E | 22F | |
size | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ52 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ6 | 1 | 1 | -1 | -1 | ζ52 | ζ53 | ζ54 | ζ5 | -ζ54 | -ζ53 | -ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ53 | -ζ52 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 10 |
ρ7 | 1 | 1 | -1 | -1 | ζ54 | ζ5 | ζ53 | ζ52 | -ζ53 | -ζ5 | -ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ5 | -ζ54 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 10 |
ρ8 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ54 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ9 | 1 | 1 | -1 | -1 | ζ5 | ζ54 | ζ52 | ζ53 | -ζ52 | -ζ54 | -ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ54 | -ζ5 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 10 |
ρ10 | 1 | -1 | -1 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ53 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | ζ52 | ζ54 | ζ5 | -ζ54 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ11 | 1 | -1 | 1 | -1 | ζ54 | ζ5 | ζ53 | ζ52 | -ζ53 | ζ5 | ζ53 | -ζ52 | -ζ54 | -ζ5 | -ζ53 | ζ52 | -ζ52 | -ζ54 | -ζ5 | ζ54 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 10 |
ρ12 | 1 | -1 | -1 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ5 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | ζ54 | ζ53 | ζ52 | -ζ53 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ13 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | ζ5 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ14 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | ζ53 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ15 | 1 | -1 | 1 | -1 | ζ53 | ζ52 | ζ5 | ζ54 | -ζ5 | ζ52 | ζ5 | -ζ54 | -ζ53 | -ζ52 | -ζ5 | ζ54 | -ζ54 | -ζ53 | -ζ52 | ζ53 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 10 |
ρ16 | 1 | -1 | 1 | -1 | ζ52 | ζ53 | ζ54 | ζ5 | -ζ54 | ζ53 | ζ54 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | ζ5 | -ζ5 | -ζ52 | -ζ53 | ζ52 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 10 |
ρ17 | 1 | 1 | -1 | -1 | ζ53 | ζ52 | ζ5 | ζ54 | -ζ5 | -ζ52 | -ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ52 | -ζ53 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 10 |
ρ18 | 1 | -1 | -1 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | ζ54 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | ζ5 | ζ52 | ζ53 | -ζ52 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ19 | 1 | -1 | -1 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | ζ52 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | ζ53 | ζ5 | ζ54 | -ζ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ20 | 1 | -1 | 1 | -1 | ζ5 | ζ54 | ζ52 | ζ53 | -ζ52 | ζ54 | ζ52 | -ζ53 | -ζ5 | -ζ54 | -ζ52 | ζ53 | -ζ53 | -ζ5 | -ζ54 | ζ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 10 |
ρ21 | 5 | -5 | -5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | 1-√-11/2 | 1+√-11/2 | 1-√-11/2 | 1+√-11/2 | complex lifted from C2×C11⋊C5 |
ρ22 | 5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | -1+√-11/2 | -1-√-11/2 | complex lifted from C11⋊C5 |
ρ23 | 5 | -5 | -5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | 1+√-11/2 | 1-√-11/2 | 1+√-11/2 | 1-√-11/2 | complex lifted from C2×C11⋊C5 |
ρ24 | 5 | 5 | -5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 1+√-11/2 | 1-√-11/2 | -1+√-11/2 | 1+√-11/2 | 1-√-11/2 | -1-√-11/2 | complex lifted from C2×C11⋊C5 |
ρ25 | 5 | -5 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 1+√-11/2 | 1-√-11/2 | 1-√-11/2 | -1-√-11/2 | -1+√-11/2 | 1+√-11/2 | complex lifted from C2×C11⋊C5 |
ρ26 | 5 | -5 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 1-√-11/2 | 1+√-11/2 | 1+√-11/2 | -1+√-11/2 | -1-√-11/2 | 1-√-11/2 | complex lifted from C2×C11⋊C5 |
ρ27 | 5 | 5 | -5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 1-√-11/2 | 1+√-11/2 | -1-√-11/2 | 1-√-11/2 | 1+√-11/2 | -1+√-11/2 | complex lifted from C2×C11⋊C5 |
ρ28 | 5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | -1-√-11/2 | -1+√-11/2 | complex lifted from C11⋊C5 |
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)(35 38 39 43 37)(36 42 44 41 40)
G:=sub<Sym(44)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)>;
G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40) );
G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29),(35,38,39,43,37),(36,42,44,41,40)]])
C22×C11⋊C5 is a maximal subgroup of
C22⋊F11
Matrix representation of C22×C11⋊C5 ►in GL6(𝔽331)
330 | 0 | 0 | 0 | 0 | 0 |
0 | 330 | 0 | 0 | 0 | 0 |
0 | 0 | 330 | 0 | 0 | 0 |
0 | 0 | 0 | 330 | 0 | 0 |
0 | 0 | 0 | 0 | 330 | 0 |
0 | 0 | 0 | 0 | 0 | 330 |
330 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 103 | 2 | 225 | 104 | 1 |
0 | 104 | 2 | 225 | 104 | 1 |
0 | 103 | 3 | 225 | 104 | 1 |
0 | 103 | 2 | 226 | 104 | 1 |
0 | 103 | 2 | 225 | 105 | 1 |
323 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 105 | 228 | 329 | 106 | 227 |
0 | 106 | 227 | 103 | 2 | 226 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(331))| [330,0,0,0,0,0,0,330,0,0,0,0,0,0,330,0,0,0,0,0,0,330,0,0,0,0,0,0,330,0,0,0,0,0,0,330],[330,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,103,104,103,103,103,0,2,2,3,2,2,0,225,225,225,226,225,0,104,104,104,104,105,0,1,1,1,1,1],[323,0,0,0,0,0,0,0,105,106,1,0,0,0,228,227,0,0,0,1,329,103,0,0,0,0,106,2,0,1,0,0,227,226,0,0] >;
C22×C11⋊C5 in GAP, Magma, Sage, TeX
C_2^2\times C_{11}\rtimes C_5
% in TeX
G:=Group("C2^2xC11:C5");
// GroupNames label
G:=SmallGroup(220,8);
// by ID
G=gap.SmallGroup(220,8);
# by ID
G:=PCGroup([4,-2,-2,-5,-11,331]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^11=d^5=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of C22×C11⋊C5 in TeX
Character table of C22×C11⋊C5 in TeX