Copied to
clipboard

G = C22×C11⋊C5order 220 = 22·5·11

Direct product of C22 and C11⋊C5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C22×C11⋊C5, C222C10, (C2×C22)⋊C5, C112(C2×C10), SmallGroup(220,8)

Series: Derived Chief Lower central Upper central

C1C11 — C22×C11⋊C5
C1C11C11⋊C5C2×C11⋊C5 — C22×C11⋊C5
C11 — C22×C11⋊C5
C1C22

Generators and relations for C22×C11⋊C5
 G = < a,b,c,d | a2=b2=c11=d5=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

11C5
11C10
11C10
11C10
11C2×C10

Character table of C22×C11⋊C5

 class 12A2B2C5A5B5C5D10A10B10C10D10E10F10G10H10I10J10K10L11A11B22A22B22C22D22E22F
 size 11111111111111111111111111111111111155555555
ρ11111111111111111111111111111    trivial
ρ21-11-11111-111-1-1-1-11-1-1-1111-1-1-111-1    linear of order 2
ρ311-1-11111-1-1-11111-1-1-1-1-111-1-11-1-11    linear of order 2
ρ41-1-1111111-1-1-1-1-1-1-1111-11111-1-1-1-1    linear of order 2
ρ51111ζ5ζ54ζ52ζ53ζ52ζ54ζ52ζ53ζ5ζ54ζ52ζ53ζ53ζ5ζ54ζ511111111    linear of order 5
ρ611-1-1ζ52ζ53ζ54ζ5545354ζ5ζ52ζ53ζ545552535211-1-11-1-11    linear of order 10
ρ711-1-1ζ54ζ5ζ53ζ5253553ζ52ζ54ζ5ζ5352525455411-1-11-1-11    linear of order 10
ρ81111ζ52ζ53ζ54ζ5ζ54ζ53ζ54ζ5ζ52ζ53ζ54ζ5ζ5ζ52ζ53ζ5211111111    linear of order 5
ρ911-1-1ζ5ζ54ζ52ζ53525452ζ53ζ5ζ54ζ525353554511-1-11-1-11    linear of order 10
ρ101-1-11ζ54ζ5ζ53ζ52ζ53553525455352ζ52ζ54ζ5541111-1-1-1-1    linear of order 10
ρ111-11-1ζ54ζ5ζ53ζ5253ζ5ζ535254553ζ5252545ζ5411-1-1-111-1    linear of order 10
ρ121-1-11ζ53ζ52ζ5ζ54ζ5525545352554ζ54ζ53ζ52531111-1-1-1-1    linear of order 10
ρ131111ζ53ζ52ζ5ζ54ζ5ζ52ζ5ζ54ζ53ζ52ζ5ζ54ζ54ζ53ζ52ζ5311111111    linear of order 5
ρ141111ζ54ζ5ζ53ζ52ζ53ζ5ζ53ζ52ζ54ζ5ζ53ζ52ζ52ζ54ζ5ζ5411111111    linear of order 5
ρ151-11-1ζ53ζ52ζ5ζ545ζ52ζ55453525ζ54545352ζ5311-1-1-111-1    linear of order 10
ρ161-11-1ζ52ζ53ζ54ζ554ζ53ζ545525354ζ555253ζ5211-1-1-111-1    linear of order 10
ρ1711-1-1ζ53ζ52ζ5ζ545525ζ54ζ53ζ52ζ5545453525311-1-11-1-11    linear of order 10
ρ181-1-11ζ52ζ53ζ54ζ5ζ54535455253545ζ5ζ52ζ53521111-1-1-1-1    linear of order 10
ρ191-1-11ζ5ζ54ζ52ζ53ζ525452535545253ζ53ζ5ζ5451111-1-1-1-1    linear of order 10
ρ201-11-1ζ5ζ54ζ52ζ5352ζ54ζ525355452ζ5353554ζ511-1-1-111-1    linear of order 10
ρ215-5-550000000000000000-1+-11/2-1--11/2-1--11/2-1+-11/21--11/21+-11/21--11/21+-11/2    complex lifted from C2×C11⋊C5
ρ2255550000000000000000-1+-11/2-1--11/2-1--11/2-1+-11/2-1+-11/2-1--11/2-1+-11/2-1--11/2    complex lifted from C11⋊C5
ρ235-5-550000000000000000-1--11/2-1+-11/2-1+-11/2-1--11/21+-11/21--11/21+-11/21--11/2    complex lifted from C2×C11⋊C5
ρ2455-5-50000000000000000-1+-11/2-1--11/21+-11/21--11/2-1+-11/21+-11/21--11/2-1--11/2    complex lifted from C2×C11⋊C5
ρ255-55-50000000000000000-1+-11/2-1--11/21+-11/21--11/21--11/2-1--11/2-1+-11/21+-11/2    complex lifted from C2×C11⋊C5
ρ265-55-50000000000000000-1--11/2-1+-11/21--11/21+-11/21+-11/2-1+-11/2-1--11/21--11/2    complex lifted from C2×C11⋊C5
ρ2755-5-50000000000000000-1--11/2-1+-11/21--11/21+-11/2-1--11/21--11/21+-11/2-1+-11/2    complex lifted from C2×C11⋊C5
ρ2855550000000000000000-1--11/2-1+-11/2-1+-11/2-1--11/2-1--11/2-1+-11/2-1--11/2-1+-11/2    complex lifted from C11⋊C5

Smallest permutation representation of C22×C11⋊C5
On 44 points
Generators in S44
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)(35 38 39 43 37)(36 42 44 41 40)

G:=sub<Sym(44)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)>;

G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40) );

G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29),(35,38,39,43,37),(36,42,44,41,40)]])

C22×C11⋊C5 is a maximal subgroup of   C22⋊F11

Matrix representation of C22×C11⋊C5 in GL6(𝔽331)

33000000
03300000
00330000
00033000
00003300
00000330
,
33000000
010000
001000
000100
000010
000001
,
100000
010322251041
010422251041
010332251041
010322261041
010322251051
,
32300000
000100
0105228329106227
01062271032226
010000
000010

G:=sub<GL(6,GF(331))| [330,0,0,0,0,0,0,330,0,0,0,0,0,0,330,0,0,0,0,0,0,330,0,0,0,0,0,0,330,0,0,0,0,0,0,330],[330,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,103,104,103,103,103,0,2,2,3,2,2,0,225,225,225,226,225,0,104,104,104,104,105,0,1,1,1,1,1],[323,0,0,0,0,0,0,0,105,106,1,0,0,0,228,227,0,0,0,1,329,103,0,0,0,0,106,2,0,1,0,0,227,226,0,0] >;

C22×C11⋊C5 in GAP, Magma, Sage, TeX

C_2^2\times C_{11}\rtimes C_5
% in TeX

G:=Group("C2^2xC11:C5");
// GroupNames label

G:=SmallGroup(220,8);
// by ID

G=gap.SmallGroup(220,8);
# by ID

G:=PCGroup([4,-2,-2,-5,-11,331]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^11=d^5=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C22×C11⋊C5 in TeX
Character table of C22×C11⋊C5 in TeX

׿
×
𝔽